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Abstract  

Permutation optimization is a fundamental problem in large-scale computing that arises in various applications such as 

scheduling, resource allocation, and combinatorial decision-making. As the size of the solution space grows exponentially, 

conventional optimization methods often struggle to achieve acceptable performance within reasonable computational time. 

Heuristic and metaheuristic algorithms have therefore become widely adopted due to their flexibility and ability to provide 

near-optimal solutions for NP-hard problems. However, increasing data scale significantly impacts their computational 

complexity, making efficiency and scalability critical concerns.This study aims to analyze the computational complexity 

and performance characteristics of several heuristic algorithms applied to permutation optimization in large-scale 

computing environments. The research employs a quantitative experimental approach combined with theoretical 

complexity analysis. Greedy heuristic, simulated annealing, genetic algorithm, and adaptive heuristic methods are evaluated 

using synthetic permutation datasets with varying sizes. Performance is assessed based on execution time, memory usage, 

scalability, and solution quality. The results indicate that greedy heuristics offer the fastest execution and lowest memory 

consumption but tend to produce suboptimal solutions due to their local search strategy. Simulated annealing improves 

solution quality through probabilistic exploration, while genetic algorithms achieve the highest-quality solutions at the cost 

of substantial computational and memory overhead. Adaptive heuristic algorithms demonstrate a balanced performance by 

dynamically adjusting parameters during execution, achieving near-optimal solutions with reduced computational 

complexity. Overall, this research highlights the trade-offs between efficiency and solution quality among heuristic 

algorithms and emphasizes the potential of adaptive heuristic approaches for large-scale permutation optimization. The 

findings provide valuable insights for designing efficient and scalable optimization algorithms suitable for real-world large-

scale computing applications. 

Keywords :  Permutation Optimization, Heuristic Algorithms, Computational Complexity, Large-Scale Computing, 

Adaptive Optimization 

1. INTRODUCTION 

In the era of digital and increasingly widespread data processing, optimization problems emerge as a 

significant challenge, especially in the context of large-scale computing and resource management[1]. 

Permutations, as a form of arranging elements, can be applied in various fields, including schedule 

optimization, resource allocation, and many other complex and non-linear problems[2]. Most conventional 

optimization algorithms, particularly those based on heuristics, tend to struggle when faced with large or 

complex problems that require processing within a short timeframe to meet the needs of various real-world 

applications[3]. In line with this, recent literature indicates a shift in focus from global optimization algorithms 

with a priori exponential complexity toward the application of more adaptive heuristic and metaheuristic 

methods[4]. 

Bayes and heuristic optimizers attempt to address this challenge by offering flexible solutions to NP-

hard problems, facilitating more efficient handling of large volumes of data[5]. Recent research also shows 

that the use of machine learning algorithms is increasingly developing in various optimization applications, 

resulting in methods that better balance usability and computational complexity[6], [7]. This contribution 

serves to encourage the discovery of more efficient and effective algorithms for solving permutation 

optimization problems in a broader context[8]. In that context, this study focuses on analyzing the complexity 

of heuristic algorithms for permutation optimization[9], [10]. The main problem is how to design a heuristic 

algorithm that not only successfully finds good solutions in a short amount of time but also has the capacity to 

handle increasingly large dataset sizes. To address this challenge, a common approach adopted is to combine 

heuristic techniques with an adaptive algorithmic framework that allows for dynamic parameter adjustment. 

This approach aims to extend the effectiveness of traditional heuristics in the context of large-scale data 

processing[11]. 
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Previous literature has highlighted several solutions that have been adopted to address this issue. For 

example, research by Balachandar applied a dynamic and adaptive resource allocation approach in edge 

computing, demonstrating that algorithms like Gradient Boosting Decision Trees (GBDT) and Deep Q-

Networks (DQN) can deliver significant results in the context of big data analytics[10], [11], [12]. Similarly, 

research by Gao et al. discusses efficient model construction strategies in multi-scale signal processing that can 

be applied to estimate the state of charge of lithium-ion batteries, emphasizing the importance of flexibility in 

the algorithms used. These studies provide valuable insights into handling optimization problems and applying 

heuristic algorithms in a more innovative and effective manner[13]. However, despite the valuable 

contributions of these solutions, there are still significant research gaps in the implementation of heuristic 

algorithms for permutation optimization[14]. Methodological limitations, particularly in terms of 

computational complexity which increases with population size, pose a significant challenge in developing 

more robust approaches. Therefore, a deeper exploration of the interaction between algorithm structure, 

resource management, and computational complexity is crucial for identifying more optimal and general 

solutions. 

The purpose of this study is to provide a better understanding of the design and complexity of heuristic 

algorithms for permutation optimization problems in the context of large-scale computing. This research aims 

to explore new approaches and innovative solutions that can address the limitations present in literature. Thus, 

it is hoped that this will make a significant contribution to the knowledge base in the field of optimization and 

to practical application. This research also aims to formulate new hypotheses focusing on developing 

algorithms that are highly efficient and can be used in real-world applications with high reliability. This 

research will discuss different approaches with a broad scope to capture the various challenges and dynamics 

encountered in their application. 

2. RESEARCH METHODOLOGY 

2.1. Context and Problem  

This research aims to address the main problem in permutation optimization for large-scale 

computing: the increasing computational complexity of heuristic algorithms as data size and solution space 

grow. This issue necessitates a systematic approach to analyze the time and space complexity characteristics 

of the heuristic algorithms used, as well as their effectiveness in producing near-optimal solutions. 

2.2. Research Approach and Design  

The research method used is a quantitative approach with an experimental and analytical design[15]. 

The research began with a literature study to identify heuristic and metaheuristic algorithms commonly used 

in permutation optimization, such as the greedy heuristic, simulated annealing, genetic algorithm, and adaptive 

heuristic approaches. These algorithms were chosen as the object of analysis based on their relevance to NP-

hard problems and their application in large-scale computing. Next, an experimental scenario was designed by 

constructing several permutation optimization problem models that varied in size and complexity. Synthetic 

datasets are used to control the number of permutation elements, allowing for the systematic observation of the 

influence of data scale on algorithm performance. Each algorithm is implemented with uniform parameters to 

ensure objective comparison results. 

2.3. Research Flow 

To facilitate understanding of the research stages, the research flow is illustrated in the following 

diagram. The research begins with problem identification, followed by a literature review, problem model 

formulation, selection and design of heuristic algorithms, theoretical complexity analysis, experimental 

scenario design, algorithm implementation and testing, and finally, results analysis and conclusion and 

recommendation formulation. 
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Figure 1. Research Flow for Analyzing the Complexity of Heuristic Algorithms for Permutation 

Optimization 

The research began by identifying the problem of permutation optimization in large-scale computing, 

followed by a literature study to determine relevant heuristic approaches. Next, the problem model was 

formulated and a heuristic algorithm was designed, which was analyzed from a theoretical complexity 

perspective. The subsequent stages included experiment design, algorithm implementation, and performance 

testing. The test results were analyzed comparatively to draw conclusions and make research recommendations. 

2.4. Analysis and Measurement Procedures  

The analysis was conducted thru two main approaches: theoretical analysis and empirical analysis. 

Theoretical analysis focuses on estimating the time and space complexity of algorithms based on their 

operational structure, such as the number of iterations, objective function evaluations, and solution search 

mechanisms. Meanwhile, empirical analysis is conducted by measuring execution time, memory usage, and 

the quality of solutions generated in each experimental scenario.To enhance relevance to large-scale 

computing, this study also evaluates the impact of adaptive mechanisms, such as dynamic parameter 

adjustment, on the performance and complexity of heuristic algorithms. Experimental results are analyzed 

comparatively to identify patterns of relationships between problem size, computational complexity, and 

solution performance. 

2.5. Reason for Method Selection  

The experimental approach was chosen because it can provide a realistic picture of the behavior of 

heuristic algorithms under large-scale conditions. The combination of theoretical and empirical analysis allows 

this research not only to mathematically explain the complexity but also to validate it thru implementation 

results. Thus, this method is considered the most suitable for addressing the research objectives and filling the 

existing gaps in the literature. 

2.6. Further Research Steps  

The analysis results from this study are used as a basis for formulating recommendations for a more 

efficient and adaptive heuristic algorithm design. Additionally, the research findings are expected to serve as 

a foundation for the development of advanced algorithms that can be applied to various permutation 

optimization applications in large-scale computing environments 

3. RESULTS AND DISCUSSION 

This section presents the results obtained from the theoretical and empirical analysis of heuristic algorithms 

applied to permutation optimization problems in large-scale computing environments. The discussion focuses 

on computational complexity behavior, execution performance, scalability, and solution quality across 

different heuristic approaches. The algorithms analyzed include greedy heuristic, simulated annealing, genetic 

algorithm, and an adaptive heuristic framework. The results are presented in both descriptive and comparative 

forms to highlight the strengths and limitations of each approach. 
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3.1 Theoretical Complexity Analysis of Heuristic Algorithms 

The theoretical analysis aims to estimate the time and space complexity of each heuristic algorithm 

based on its operational structure. In permutation optimization problems, complexity is heavily influenced by 

the size of the permutation set 𝑛, the number of iterations, and the evaluation of the objective function. 

The greedy heuristic algorithm demonstrates relatively low computational complexity because it 

constructs solutions incrementally using local decision rules. The average time complexity of the greedy 

heuristic can be approximated as 𝑂(𝑛2), depending on the number of comparisons required during permutation 

construction. This makes the greedy approach suitable for large datasets where fast execution is required, 

although it may sacrifice solution optimality. 

Simulated annealing introduces a probabilistic mechanism to escape local optima. Its complexity 

depends on the number of iterations and the cooling schedule. In practice, the time complexity is approximately 

𝑂(𝑘⋅𝑛) where 𝑘 is the number of temperature iterations. While simulated annealing requires more computation 

than greedy heuristics, it often produces better-quality solutions due to its stochastic exploration. 

Genetic algorithms exhibit higher computational complexity due to population-based search 

mechanisms. The complexity can be expressed as 𝑂(𝑔⋅𝑝⋅𝑛), where 𝑔 is the number of generations and 𝑝 is the 

population size. Despite higher computational cost, genetic algorithms offer strong global search capabilities, 

making them suitable for complex and highly non-linear permutation problems. 

Adaptive heuristic algorithms integrate dynamic parameter adjustment to balance exploration and 

exploitation. Although the theoretical complexity is comparable to genetic algorithms, adaptive mechanisms 

can reduce unnecessary iterations, resulting in improved efficiency under large-scale conditions. 

Table 1. Theoretical Time Complexity of Heuristic Algorithms 

Algorithm 
Time Complexity 

Approximation 

Space 

Complexity 
Characteristics 

Greedy Heuristic O(n²) Low Fast execution, local optimum 

Simulated Annealing O(k · n) Medium Probabilistic search, flexible 

Genetic Algorithm O(g · p · n) High Global exploration, robust 

Adaptive Heuristic O(g · p · n) (optimized) Medium–High Dynamic, scalable 

Theoretical analysis indicates that while greedy heuristics are computationally efficient, adaptive and 

evolutionary methods provide better scalability and solution quality for complex permutation problems. 

3.2 Experimental Setup and Dataset Characteristics 

The empirical evaluation was conducted using synthetic permutation datasets with varying sizes to 

simulate large-scale computing conditions. The number of permutation elements ranged from 100 to 10,000 to 

observe algorithm behavior under increasing complexity. Each algorithm was implemented using identical 

hardware and execution environments to ensure fairness. 

Performance metrics included execution time, memory usage, and solution quality measured by 

objective function value. Each experiment was repeated multiple times, and average results were recorded to 

minimize stochastic bias, particularly for simulated annealing and genetic algorithms. 

3.3 Execution Time Analysis 

Execution time is a critical factor in large-scale optimization, especially in real-time or resource-

constrained environments. The results show a clear relationship between dataset size and execution time for 

all heuristic algorithms. 

The greedy heuristic consistently achieved the shortest execution time across all dataset sizes. 

However, its execution time increased quadratically as the permutation size grew. Simulated annealing 

exhibited moderate execution time, with a more linear growth pattern due to controlled iteration counts. 

Genetic algorithms required significantly more execution time, especially for large permutation sizes, 

due to population initialization, crossover, and mutation processes. Adaptive heuristic algorithms demonstrated 

improved execution efficiency compared to standard genetic algorithms, as dynamic parameter tuning reduced 

unnecessary computations. 

Table 2. Average Execution Time (Seconds) 

Permutation 

Size 
Greedy 

Simulated 

Annealing 

Genetic 

Algorithm 

Adaptive 

Heuristic 

100 0.02 0.08 0.15 0.12 
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Permutation 

Size 
Greedy 

Simulated 

Annealing 

Genetic 

Algorithm 

Adaptive 

Heuristic 

1,000 0.45 0.92 1.80 1.35 

5,000 2.60 4.10 9.75 7.20 

10,000 5.90 8.85 21.40 16.30 

These results confirm that greedy heuristics are suitable for applications requiring fast execution, 

while adaptive heuristics offer a better trade-off between execution time and optimization capability in large-

scale scenarios. 

3.4 Memory Usage Analysis 

Memory consumption is another important aspect of algorithm performance, particularly in large-

scale computing systems with limited resources. The greedy heuristic consumed minimal memory since it does 

not maintain multiple solution states. Simulated annealing required additional memory to store intermediate 

solutions and temperature schedules. 

Genetic algorithms showed the highest memory usage due to population storage and genetic operators. 

Adaptive heuristics reduced memory overhead by dynamically adjusting population size and reducing 

redundant individuals. 

Table 3. Average Memory Usage (MB) 

Algorithm Memory Usage (MB) 

Greedy Heuristic 12 

Simulated Annealing 28 

Genetic Algorithm 65 

Adaptive Heuristic 48 

The results indicate that adaptive heuristic algorithms provide a more efficient memory-performance 

balance compared to traditional evolutionary approaches. 

3.5 Solution Quality Comparison 

Solution quality is measured based on the objective function value obtained by each algorithm. 

Higher-quality solutions indicate better permutation optimization results. The greedy heuristic often converged 

quickly but produced suboptimal solutions due to its local decision strategy. 

Simulated annealing improved solution quality by escaping local optima, while genetic algorithms 

achieved the highest-quality solutions due to their global search capability. Adaptive heuristics achieved 

comparable solution quality to genetic algorithms but with reduced computational cost. 

Table 4. Solution Quality Comparison (Normalized Score) 

Algorithm Solution Quality 

Greedy Heuristic 0.72 

Simulated Annealing 0.84 

Genetic Algorithm 0.91 

Adaptive Heuristic 0.89 

The results demonstrate that adaptive heuristic algorithms effectively balance computational 

efficiency and solution quality, making them suitable for large-scale permutation optimization. 

3.6 Discussion of Scalability and Practical Implications 

The scalability analysis reveals that algorithm performance is strongly influenced by permutation size 

and computational resources. Greedy heuristics scale well in terms of speed but poorly in solution quality. 

Genetic algorithms scale well in solution quality but require substantial computational resources. 

Adaptive heuristic approaches provide a middle ground by dynamically adjusting parameters based 

on problem size and performance feedback. This adaptability allows the algorithm to maintain acceptable 

execution time while producing near-optimal solutions. 

https://doi.org/10.62712/
https://doi.org/10.62712/
https://doi.org/10.62712/
https://creativecommons.org/licenses/by/4.0/


e-ISSN: 3110-0864 | p-ISSN: XXXX-XXXX 

JURNAL ILMU KOMPUTER DAN TEKNIK INFORMATIKA 

Volume 2 No 1 January 2026 | Page: 1-7 

https://journals.raskhamedia.or.id/index.php/juikti 

DOI: https://doi.org/10.64803/juikti.v2i1.79  

 

Copyright © 2026 Author, Page 6  
This Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

From a practical perspective, the choice of heuristic algorithm depends on application requirements. 

Time-critical systems benefit from greedy or simulated annealing approaches, while applications requiring 

high optimization accuracy can leverage adaptive or evolutionary heuristics. 

3.7 Summary of Findings 

Overall, the results indicate that no single heuristic algorithm is universally optimal for all permutation 

optimization problems. However, adaptive heuristic algorithms demonstrate superior performance in balancing 

complexity, scalability, and solution quality. These findings support the research objective of identifying more 

efficient and flexible heuristic designs for large-scale computing environments. 

4. CONCLUSION 

This study has presented a comprehensive analysis of the complexity and performance of heuristic 

algorithms for permutation optimization in large-scale computing environments. By combining theoretical 

complexity analysis and empirical experimentation, this research provides a clearer understanding of how 

different heuristic approaches behave as problem size and computational demands increase. The results 

demonstrate that traditional greedy heuristics offer fast execution and low memory consumption, making them 

suitable for time-critical applications, although they tend to produce suboptimal solutions due to their local 

search nature. Simulated annealing improves solution quality by incorporating probabilistic exploration, but 

its performance is highly dependent on parameter tuning and iteration limits. Genetic algorithms exhibit strong 

global search capabilities and consistently achieve high-quality solutions; however, they incur significant 

computational and memory overhead, which limits their efficiency in large-scale scenarios. In contrast, 

adaptive heuristic algorithms show promising performance by dynamically adjusting parameters during 

execution, allowing them to balance exploration and exploitation more effectively. The adaptive approach 

achieves solution quality comparable to genetic algorithms while reducing execution time and memory usage, 

indicating its suitability for large-scale permutation optimization problems. The findings of this research 

highlight that there is no universally optimal heuristic algorithm for all permutation optimization cases. Instead, 

algorithm selection should be guided by application requirements, such as execution speed, resource 

constraints, and solution accuracy. This study contributes to the existing literature by providing a structured 

comparison of heuristic algorithm complexity and performance, particularly in the context of large-scale 

computing. Future research may extend this work by integrating machine learning techniques for automated 

parameter tuning and by applying adaptive heuristic frameworks to real-world optimization problems to 

validate their effectiveness and scalability further. 
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